
© 2018 Arm Limited

Porting HPC Applications to Arm
• Phil Ridley

• Phil.Ridley@arm.com

• 5th September 2018

mailto:Phil.ridley@arm.com

2 © 2018 Arm Limited

Topics

• Arm in HPC

• Arm Software for HPC

• Tools

• Things to Consider when Porting

• Building GROMACS

• Conclusions

Arm in HPC

4 © 2018 Arm Limited

Arm Technology Already Connects the World

Arm is ubiquitous

We design IP, not
manufacture chips

Partners build products
for their target markets

One size is not always the
best fit for all

HPC is a great fit for
co-design and collaboration

Partnership is key Choice is good

21 billion chips sold by
partners in 2017 alone

Mobile/Embedded/IoT/
Automotive/Server/GPUs

5 © 2018 Arm Limited

Deployments: Isambard @ GW4

• Cray XC50 series system
• Aries Interconnect

• 10,000+ Armv8.1a cores
• Cavium Thunder X2
• 2 x 32 cores @ > 2.0GHz

• Cray Programming Environment

• Platform for technology comparison
• x86, GPU, Armv8.1a

• Arm components arriving soon

6 © 2018 Arm Limited

Deployments: Catalyst UK

• HPE, in conjunction with Arm and
SUSE, announced in April the “Catalyst
UK” program: deployments to
accelerate the growth of the Arm HPC
ecosystem into three universities

• Each machine will have:
• 64 HPE Apollo 70 systems, each with

two 32-core Cavium ThunderX2
processors (i.e. 4096 cores per system),
128GB of memory and Mellanox
InfiniBand interconnects

• SUSE Linux Enterprise Server for HPC

Bristol: VASP,
CASTEP, Gromacs,
CP2K, Unified
Model, NAMD,
Oasis, NEMO,
OpenIFS, CASINO,
LAMMPS

EPCC: WRF,
OpenFOAM, Two
PhD candidates

Leicester: Data-
intensive apps,
genomics, MOAB
Torque, DiRAC
collab

Arm Software for
HPC

8 © 2018 Arm Limited

Open source and commercial tools
Arm and partners collaborating to increase end-user performance

Open source

Compiler performance of both GCC and
LLVM compilers is enhanced by Arm
OpenHPC 1.3.5 release is now out
• Builds are available for both CentOS and SUSE

Community building for HPC apps porting
and performance
• Arm HPC GitLab: https://gitlab.com/arm-hpc/

Arm Allinea Studio
• Comprehensive and integrated tool

suite
• Commercially supported by Arm
• Frequent releases with continuous

performance improvements
• Ready for current and future

generations of Arm-based HPC
platforms

https://gitlab.com/arm-hpc/

9 © 2018 Arm Limited

Software Ecosystem – HPC Applications Porting

Build recipes online at https://gitlab.com/arm-hpc/packages/wikis/home

LAMMPS CESM MrBayes Bowtie

AMBER Paraview SIESTA VMDNAMD

CP2k MILCWRF GEANT4Quantum
ESPRESSO

DL_POLY NEMOGAMESSOpenFOAM VisIT

QMCPACKAbinitBLAST NWCHEM BWA

GROMACS

Chem/Phys Weather CFD Visualization Genomics

Tools for HPC on
Arm

11 © 2018 Arm Limited

Commercial C/C++/Fortran compiler with best-in-class performance

Tuned for Scientific Computing, HPC and Enterprise workloads
• Processor-specific optimizations for various server-class Arm-based platforms

• Optimal shared-memory parallelism using latest Arm-optimized OpenMP runtime

Linux user-space compiler with latest features
• C++ 14 and Fortran 2003 language support
• Some Fortran 2008 language support
• Fortran has OpenMP 3.1 support and some OpenMP 4.0/4.5 support
• C/C++ has OpenMP 4.0/4.5 support (excluding omp declare simd, device

constructs and offloading)
• Support for Armv8-A and SVE architecture extension

• Based on LLVM and Flang, leading open-source compiler projects

Commercially supported by Arm
• Available for a wide range of Arm-based platforms running leading Linux

distributions – RedHat, SUSE and Ubuntu

Compilers tuned for Scientific
Computing and HPC

Latest features and
performance optimizations

Commercially supported
by Arm

* Without offloading

https://developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler/fortran-2003-status
https://developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler/fortran-2008-status
https://developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler/openmp-support

12 © 2018 Arm Limited

Useful flags for armclang, armclang++ and armflang
Compiler Flag Description

--help Display list of supported options, there are further
(non-supported) options available with --help-hidden

-mcpu=thunderx2t99 or
-mcpu=native

Optimize for particular CPU

-O3 Very high optimization, the default is -O0 which turns
off most optimizations

-Ofast Everything from -O3 but also -ffp-contract=fast and
other more aggressive optimizations

-fopenmp Enable OpenMP directives (not enabled by default)

-g Generate source-level debug information

-Rpass=\(loop-vectorize\|inline\) Find out what the compiler has optimized

-S Outputs assembly code, rather than object code.
Produces a text .s file containing annotated assembly
code

-v Show commands to run and use verbose output

Most of the flags for the Arm HPC compilers are the
same for GCC

Use the -mcpu=native flag. Then try the following
options, in order of lowering the optimization

1. -Ofast (this produces the fastest code)
2. -Ofast -fno-stack-arrays (this forces automatic

arrays not to be placed on the stack)
3. -O3 -ffp-contract=fast (still allows fused floating-

point operations)
4. -O3
5. -O2

13 © 2018 Arm Limited

Optimized BLAS, LAPACK and FFT

Commercial 64-bit Armv8-A math libraries
• Commonly used low-level math routines - BLAS, LAPACK and FFT
• Provides FFTW compatible interface for FFT routines

Best-in-class serial and parallel performance
• Generic Armv8-A optimizations by Arm
• Tuning for specific platforms like Cavium ThunderX2

Validated and supported by Arm
• Validated with NAG’s test suite, a de facto standard
• Responsive support team

Best in class performance

Validated with
NAG test suite

Commercially supported
by Arm

14 © 2018 Arm Limited

How to link

Note: To use Arm PL functions in
your code, you need to include the
header file <armpl.h>
(in $ARMPL_DIR)

To link
gfortran driver.f90 -L${ARMPL_DIR}/lib -larmpl_lp64
armflang driver.f90 -L${ARMPL_DIR}/lib -larmpl_lp64
armclang driver.c -L${ARMPL_DIR}/lib -larmpl_lp64 -lflang -lflangrti
armclang++ driver.cpp -L${ARMPL_DIR}/lib -larmpl_lp64 -lflang -lflangrti

(for multi-threaded versions use -larmpl_lp64_mp)
Documentation is in $ARMPL_DIR/Doc

15 © 2018 Arm Limited

Current version:18.4

• Key highlights

• New Fortran Directives – IVDEP and OMP SIMD

• The Arm Fortran Compiler now supports the general-purpose IVDEP directive, and partially supports

the OpenMP-specific OMP SIMD directive

• Compiler options update - -fstack-arrays now enabled by default at -Ofast optimization level

• Math routines – New routines (single precision) sinf, cosf, and optimized (double precision) pow, exp and log

- as part of the Arm Performance Libraries

• New Arm Fortran Compiler Reference Guide [PDF]

• Compiler bug fixes and improvements

Compiler and Performance Libraries

https://developer.arm.com/-/media/Files/downloads/hpc/Arm-Fortran-Compiler-Reference-guide/Arm_Fortran_Compiler_Reference_101380_1840_00_en.pdf?revision=096cd972-2dcb-4e19-b5a1-d65d7cbdef9a&la=en&_ga=2.228778460.1581605060.1532945418-1314508407.1509099193

16 © 2018 Arm Limited

What’s coming in version:19.0

• Key highlights
• Due early Nov
• Major update for compilers

• GCC 8.4
• LLVM 7.0

• Further performance improvements – better vectorization
• Fortran 2008 submodules
• Sparse Matrix Vector Multiplication (SpMV)kernel (needed for HPCG)
• FFT Guru interface,
• FFT and BLAS performance improvements

• CGEMM, SGEMM and ZGEMM
• Complex-to-real FFTW transforms, especially multidimensional problems

Compiler and Performance Libraries

17 © 2018 Arm Limited

Arm Forge
...debug with DDT

Debugddt --connect --np 4 ./mmult1_f

18 © 2018 Arm Limited

Arm Forge
...profile with MAP

map --profile mpirun –n 48 ./example

Things to Consider
When Porting

20 © 2018 Arm Limited

Surprise!
...I’m relying on a config.guess that’s way out-of-date!
Often, the config.guess supplied with an application and used by configure will not
correctly identify the platform
This can be true for a config.guess already installed on the system and used by some
configure scripts
Obtaining up-to-date versions will fix this problem:
wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -O config.guess

wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -O config.sub

21 © 2018 Arm Limited

Surprise!
...I’m relying on libtool, but it knows nothing of this “Arm compiler”
configure may not correctly identify the Arm compiler. It may not set the correct flags for
libtool to use for position independent code and passing arguments through to the linker.
When building libraries, this can cause problems down-the-road
Following configure, patch libtool as follows:
sed -i -e 's#wl=""#wl="-Wl,"#g' libtool
sed -i -e 's#pic_flag=""#pic_flag=" -fPIC -DPIC"#g' libtool

22 © 2018 Arm Limited

Surprise!
...I’m relying on non-standard extensions!
For example ISNAN, COSD ...
Or compiler-specific intrinsics, mm_prefetch, SSE calls etc.
There may be an alternate code path that can be used already. Of possibly the code isn’t
critical and can be deactivated for now, or an equivalent call can be used, or you could
write one?

23 © 2018 Arm Limited

Surprise!
...OpenMP affinity
cpus might be numbered differently to what you would expect

Bear this in mind when assigning threads to physical cores

24 © 2018 Arm Limited

Surprise!
...I can use KMP_AFFINITY with my OpenMP code

25 © 2018 Arm Limited

Surprise!
...Integer divide by zero is zero

#include<stdio.h>

int main (int argc, char** argv)
{

int x = 0;

printf("%d\n", 1/x);

return 0;
}

x86

AArch64

Important note: FP division behaves the same, this is only for integer division

26 © 2018 Arm Limited

Surprise!
...AArch64 uses a weak memory model

• For nearly all HPC codes this will not be

relevant

• Only applies to codes that use their own

implementation of shared memory

parallelization

• Symptom will be a weird race condition
• Usually caused by a lock-free thread interaction

• The implementation relies upon a TSO (stronger)

memory model

• Will behave differently on a weakly ordered memory

system

Done!

In Use
Memory Pool

In Use
Free

In Use
In Use

Core 1

Waiting for
Memory...

Core 2

In
co

m
in

g
W

rit
e

In
co

m
in

g
W

rit
e

M
ar

k
Fr

ee

In Use
Memory Pool

In Use

In Use
In Use

Core 1

Allocated

Core 2

In
co

m
in

g
W

rit
e

M
ar

k
Fr

ee
In

co
m

in
g

W
rit

e

Weakly

Ordered

In Use
Done!

Building GROMACS

28 © 2018 Arm Limited

GROMACS

• Versatile open-source code that can be used to perform molecular dynamics simulations

• Used on large HPC systems worldwide e.g. ARCHER, NERSC (US), CSC (Finland) and Piz
Daint (Switzerland)

• Supported by many developers and contributors

• C++ with OpenMP and MPI
• SIMD intrinsics for a range of instruction sets, including Arm (NEON)

• Built in capability to control threads regarding hardware locality

GROningen MAchine for Chemical Simulations

29 © 2018 Arm Limited

GROMACS

• Check if there’s info on the Arm website

https://gitlab.com/arm-hpc/packages/wikis/packages/gromacs

• GROMACS uses CMake, so check CMakeLists.txt: Are CMAKE_C_FLAGS_RELEASE /
CMAKE_CXX_FLAGS_RELEASE set with best choice for optimizations?

set(CMAKE_C_FLAGS_RELEASE "-Ofast -DNDEBUG")

set(CMAKE_CXX_FLAGS_RELEASE "-Ofast -DNDEBUG")

• Try (building own FFTW)
cmake -DCMAKE_INSTALL_PREFIX=${gromacs_install} -DBUILD_SHARED_LIBS=off -DCMAKE_C_COMPILER=`which mpicc`

-DCMAKE_CXX_COMPILER=`which mpicxx` -DGMX_BUILD_OWN_FFTW=on -DGMX_SIMD=ARM_NEON_ASIMD

-DGMX_DOUBLE=off -DGMX_EXTERNAL_BLAS=on -DGMX_EXTERNAL_LAPACK=on -DGMX_FFT_LIBRARY=fftw3

-DGMX_BLAS_USER=${ARMPL_DIR}/lib/libarmpl_lp64.so -DGMX_LAPACK_USER=${ARMPL_DIR}/lib/libarmpl_lp64.so

-DGMX_GPU=off -DGMX_MPI=on -DGMX_OPENMP=on -DGMX_X11=off ..

(may also need -DGMX_HWLOC=off)

Building

https://gitlab.com/arm-hpc/packages/wikis/packages/gromacs

30 © 2018 Arm Limited

GROMACS

• Build separate versions for both GCC and armclang++

• Double check which flags are actually being used

• Look at performance for both versions

• Check thread to core affinity and task placement

• On a TX2 you typically have either 28 or 32 physical cores per socket, on a dual socket node

• Each physical core can be configured with SMT=4, thus giving 112 or 128 logical cores per socket

• Several different ways of achieving this, e.g. OpenMPI --report-bindings

• Simpler when SMT=1

• Find out optimal number of OpenMP threads to use, e.g. export OMP_NUM_THREADS=4

Performance

31 © 2018 Arm Limited

GROMACS

• Profile with Arm MAP
• Use -g compiler flag so that

MAP can resolve required
symbols and debug info

• May need to use
compatibility launch

• Determine where code is
spending the most time

Investigate Performance

Conclusions

33 © 2018 Arm Limited

Arm HPC Ecosystem website: https://developer.arm.com/hpc
Clearinghouse for Arm’s HPC ecosystem, information channels, and collaboration

• Latest events, news, blogs, and
collateral including whitepapers,
webinars, and presentations

• Links to HPC open-source &
commercial SW packages

• Recipes for porting HPC apps
• New Arm HPC User Group Forum
• Curated and moderated by Arm

Participate, share progress, and expertise

34 © 2018 Arm Limited

Porting to Arm website: https://developer.arm.com/hpc/tutorials
Useful for reference when porting your application

• Tips on how to port to Arm

• Tips on using the compilers and

performance libraries

• Tips on using Arm DDT and Arm

MAP

• How to build some widely-used

open-source packages

• Questions, comments, ideas or

problems? Please get in touch with

the Arm support team

https://developer.arm.com/products/software-development-tools/hpc/get-support

https://developer.arm.com/products/software-development-tools/hpc/get-support

35 © 2018 Arm Limited

Supporting our users – You’re not on your own!
Arm Professional Services: Increasing scientific code performance

• In addition to developing software we
are here to help users

• Work is now extended to helping users
port and optimize their codes on Arm
HPC systems

• We are already working with users to get
best performance out of Arm
deployments

3636

The Arm trademarks featured in this presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights
reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited

